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Abstract

Structure from motion often refers to the computation of 3D structure from a matched
sequence of images. However, a (relative) depth map of a surface may not be a good
representation for storage and recognition; a more concise representation seems necessary.
The sign of the Gaussian curvature of a surface is one candidate to be a part of a useful
representation of the surface. I will show that in order to compute the sign of the Gaussian
curvature it is not necessary first to go through the computationally expensive and error
sensitive process of recovering the exact function of the surface and the motion parameters. j,-

I will first show that the sign of the normal curvature in a given direction at a given
point in the image can be computed from a simple difference of slopes of line-segments in
one image. Using this result, local surface patches can be classified as convex, concave,
parabolic (cylindrical), hyperbolic (saddle point) or planar. At the same time the transla-
tional component of the optical flow is obtained, from which the focus of expansion can be '

computed. In addition, the axes of principal curvature and the axes of zero curvature are
obtained. 8 __ . -- _
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1 Introduction

When a scene is recorded from two (or more) different positions in space, objects are projected
into diffi-rnt locations in each image. The disparity in position between the two images may
ko used to obtain the exact coordinates of objects if tike motion of the camera relative to each
object is known. This view of motion and stereo regards vision as a problem of inverse optics.
namely, the goal is to find the inverse transformation of the optical imaging process (perspective
projection). The computation is usually divided into two main steps. The first is correspon-
dence: matching features in thp two images to find the appropriate disparity in position for
each object or feature. This may be a difficult computation for many image pairs. In stereo
in particular it is considered the heart of the computational problem (e.g., [1]). Henceforth I
will assume that matching is given. The second step is the determination of the motion (or
camera) parameters that can be used to compute the distance to objects in space using geo-
metrical transformation. This is, in general, a very difficult computation. I will discuss some
important higher level goals for which it can be avoided. For these limited goals solving the

second subproblem may be unnecessary.
The problem of computing the motion paramcters from motion disparities or optical flow

(local velocities) has re-eived much attention. The corresponding problem of camera calibration
in stereo, however, is o'ten ignored. This attention is often motivated by the assumption that
this computation is a pzerequisite for higher level tasks such as navigation or recognition. For
example, for the compu ation of a complete 3D structure from motion the motion parameters
should be known. Structure from motion results often deal mainly with the minimal number of
points that are necessary to compute the inverse transformation (see [2]). For this purpose it has
been shown that 7 or 8 matched points in two views ([31 and [4]) or 5 points and their velocities
in one view ([5]) are sufficient. The actual algorithms, however, are typically computationally
expensive and sensitive to noise. It is hard to guarantee a sufficiently good estimation of the
motion parameters to maintain small errors in the structure computation (see [6]).

General motion can be decomposed into a rotation around some axis followed by a trans-
lation. In a similar way the optical flow vector can be decomposed into two components: one
due to the translation component of the motion and one due to the rotation component. In
perspective projection and if the motion is translation only, the optical flow takes a very simple
form: straight lines that intersect at a single point, the focus of expansion (FOE), see figure 1.
This point is the projection of the point towards which (or away from which) the camera's
motion is directed. If the motion is rotational only, the flow field takes the form of concentric
circles (see figure 1). It has been argued that if we can identify the two components of the flow
field then the problem is almost solved, the direction of motion and relative depth of all points

can be coraputed from the translational component of the motion (see [7]).
Because of the practical difficulties in devising a robust algorithm that will find a complete

solution of the problem, the need for a more qualitative approach to motion analysis and to
vision in general has been expressed (e.g., [8], [9] and [10]). It has been motivated in part by
the experimentally plausible hypothesis that human vision does not compute the exact inverse
mapping of the projection of a 3D world onto a 2D retina. In addition for many purposes, such
as navigation, it has been shown that the complete solution of the motion parameters may not
be necessary (e.g.. [11] and [12]). The computation of an exact 3D structure may not even be

necessary for recognition. The exact 3D coordinates of a surface do not seem to be a good
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Figure 1: An example of an optical flow, left: translation only, right: rotation only.

representation for either storage or recognition (see [13]), a more concise representation seems
necessary. The sign of the Gaussian curvature of a surface is one candidate to be a part of a
useful representation of the surface. In accordance with this view, Koenderink and van Doorn
(see, [14], [15] and [16]) have proposed an alternative theor.:cal approach to the analysis of
stereo and motion (assuming matching is given). They show how various qualitative properties
of objects and the motion field are related to invariants of a vector field (the optical flow or
stereo disparity field).

In this work I will discuss some motion and shape characteristics that can be computed
directly from motion and stereo disparities with a very simple operator. It is not necessary to
go first through the computationally difficult and error sensitive process of recovering the exact
function of the surface and the motion parameters. Thus additional errors in the computation
caused by using motion parameters that have been obtained from noisy data are avoided. It
should be noted that the computation of the shape features discussed here is not immediate
even when a complete 3D reconstructed surface is given (see [13] and [17]).

First, the sign of the normal curvature of a curve , iurface is computed from following
three points on the curve that are collinear in one io ),,. If the points remain collinear in

the other image, the normal curvature is 0. In forwartu .tion, if the smaller angle created
by the three points in the other image is turned towards the focus of expansion (FOE), the
sign is negative. If the smaller angle is turned away from the FOE, the sign is positive. In
backward motion the sign reverses. Note that the direction of the normal to the surface is not
needed for this computation. Although perspective projection is assumed, otherwise the focus
of expansion is not defined, its effects on motion disparities can be large or negligible (in the
orthographic projection limit).

Regardless of the location of the FOE, this simple operator can be computed at a selected set
of directions around a point to determine the sign of the Gaussian curvature of a local surface
patch, an intrinsic property of the surface. From this analysis, the direction of the translational
component of the motion is immediately obtained. From this component it is possible to obtain
the focus of expansion (FOE). The location of the FOE can be used to complete the classification
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of local surface patches as convex, concave, parabolic (cylindrical), hyperbolic (saddle point)

or planar. In addition, the directions of the axes of zero curvature, and hence the directions of

the principal axes. are also immediately obtained from this computation. The analysis does not
depend upon special constraints on the nature of objects in the environment, such as assuming

smoothly curved surfaces or a particular analytic representation of the surface.

The rest of the paper is organized as follows. In section 2 I review the basic differential
geometry concepts of normal curvature and Gaussian curvature and their potential usefulness
for object representation. In section 3 I show how surfaces are classified and the focus of

expansion is computed as described above. In stereo the ambiguity of a region with positive

Gaussian curvature can be resolved without additional computations, as shown in section 3.3. In

section 4 1 show that the simple sign operator described in section 3 is almost as accurate in the
presence of noise as the best algorithm that uses the 3D coordinates obtained from the same

noisy data and using perfect motion parameters (i.e. uncorrupted inverse transformation).

Since one would expect the noise to corrupt the motion parameters estimation significantly,
the sign algorithm that uses 2D projections directly seems to be more robust. In section 5 I
discuss the possible relevance of these results to biological vision. I also discuss the relation to
some literature about structure from motion. The proofs of the results discussed in section 3
are given in the appendix.

2 Surface curvature and its importance to object representa-
tion

The normal curvature of a 3D curve on a regular surface through some point is its curvature
with respect to the normal to the surface. That is, the curve is projected on a plane that

includes the normal and its tangent (a normal section) and the curvature of the projected
planar curve is the normal curvature of the original 3D curve, see figure 2. The curvature of a
curve relative to the normal to the surface is what determines the curvature of the surface. For

example, if all normal curvatures are negative, namely all the curves axe convex relative to the

normal, the surface is convex. If all are concave, the surface is concave. If some are convex and
some concave, the surface is hyperbolic, i.e. it has a saddle point.

The normal curvature of all the curves on the surface through some point can be written
as a linear combination of two principal curvatures K, and K2. These are the curvatures of two
perpendicular curves on the surface, the principal axes, that obtain the extrema of the normal

curvatures of all curves on the surface passing through the same point. Let n, denote the

normal curvature of some curve on the surface that makes an angle 0 with the first principal
axis. Then

Kn = K1cos 2 + K2 " sin 2 O. (1)

Thus the local curvature of a local surface patch can be described in terms of two numbers only,
KI and K 2 . The product of the two principal curvatures nl • K2 is called the Gaussian curvature

of the surface. It characterizes the surface independently of the environment.

The sign of the Gaussian curvature locally classifies the surface as follows:

1. elliptic (K 1 • I2 > 0),

3
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tangent
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Figure 2: The normal curvature of a 3D curve u on a surface, whose tangent through P is w.
Below is the projection of the curve on the normal section. Left: a convex example (negative
curvature), right: a concave example (positive curvature).

convex concave X

elliptic parabolic hyperbolic
a) b) c)

Figure 3: An illustration of the different surface types used for classification of surfaces, see
text.
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* convex, see figure 3a-left (Vi, K 2 < 0)

* concave, see figure 3a-right (K1, K2'> 0)

2. parabclic (cylindrical), see figure 3b (,K. = K2 . K > 0 or K2 < 0),

3. hyperbolic (saddle point), see figure 3c (K 1 • K2 < 0, i.e. KI > 0 and K2 < 0),

4. planar (K - 2 = 0, 1 = K 2 = 0).

It follows from equation (1) that the number of asymptotes, or the number of curves on the

surface with zero-curvature, determines the type of the surface. Namely,

1. elliptic: no asymptote,

2. parabolic: one asymptote,

3. hyperbolic: two asymptotes,

4. p anar: infinite number of asymptotes.

Thus for surfaces where the asymptotes are locally straight lines on the surface, the number of
straight lines on the surface that cross a point will determine the type of the surface. Various
cues like intensity gradients (see [18]) can be used to dtermine whether a straight line in
the image originated from a straight line on the surface (and thus of zero-curvature). Motion
and stereo disparities help determine the sign of the curvature in between the zero-curvature
directions which is necessary for surface classification (see section 3).

The shape of most objects can be described by an analytic function of the surface, i.
a relative depth map. For purposes of storage efficiency and recognition, a complete depth
map seems wasteful. As a representation it is sensitive to viewing direction and noise; it is
computationally expensive to match at a recognition stage; and it does not easily generalize to
give a single representation for similar objects. One alternative is representing the shape of an
object as a collection of parts where each part is described by a few surface features. Classifying

regions as convex, concave, planar, cylindrical, or hyperbolic provides one important intrinsic
surface feature. This classification can also help in finding part boundaries within an object

(figure 4a) that occur often at parabolic lines. Often the axes of principal curvature and axes
of zero-curvature, like parabolic lines that are the boundaries between different surface types,
give important directions on the surface (figure 4b).

3 Shape classification

3.1 Surface curvature and FOE from motion disparities

Henceforth perspective projection and a motion with nonzero translational component are as-
Cmed so that the focus of expansion (see section 1) is defined. Under these conditions the

analysis holds at the orthographic projection limit (that is, the perspective projection has neg-
ligible effect on the disparities yet the FOE is defined). In this limit the motion should not be
translation in depth only.
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Figure 4: Why classify surfaces: a) the classification may help divide an object into parts: b)
axes of principal curvature are often meaningful curves on the surface. The dashed lines are
parabolic lines.

Proposition 1 Let Po denote a point on the surface of some object whose projection in the
first image is 00. Let P and P2 denote two other points on the same surface whose projections
in the first image are 01 and 02, and where 0o, 01 and 02 are collinear. Let 0o, 01, and 02
be the projection.z of the same three points in a second image. Assume the motion is backward
(away from the focus of expansion). Then the sign of the normal curvature of the curve <
passing through Po, P1, and P2 can be determined as follows:

* if the smaller angle through 00, 01 and 02 is turned towards the focus of expansion then
the normal curvature of C is positive (see figure 5a).

" if 00, 01 and 02 are collinear then the normal curvature of C is 0 (see figure 5b).

" if the smaller angle through 00, 01 and 02 is turned away from the focus of expansion

then the normal curvature of ( is negative (see figure 5c).

In forward motion (towards the focus of expansion), the interpretation of the angle is reversed.
(The motion of the coordinate system is defined to be a rotation followed by a translation.)

A proof is given in the appendix. It consists of two steps. First, it is shown that the sign of the
normal curvature, the sign of a curve's curvature relative to the normal to the surface, equals
the sign of the curvature relative to the line of sight in the first image. Thus the direction of the
normal is not needed for this computation. Second, it is shown that the sign of the curvature
relative to the line of sight equals the sign of the curvature relative to the line through the FOE
and the curve in almost any 2D perspective projection of the curve, e.g. in the second image.

Figure 6 illustrates the implication of proposition 1. In a concave region, three colinear
points in the first image will move to three non-collinear points in the second image turning
towards the focus of expansion.

In practice I compute the difference of the slopes of the line segments through 0 and 01
and through 60 and 02, angles /1 and I2 in figure 5a. Thus, if Oi = (xi., yi), the sign operator
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fiint image

• "" FOE
0*

7,7.

~FOE

Figure 5: The sign of the normal curvature is determined by the relation between the angle

0 Z0

through three points in the second image, that are collinear in the first image, and the focus of
expansion. Above is the first image, 00, 01 and 02 are collinear. Below are the corresponding'
points in the second image o9o, o, and 02: a) the normal curvature is positive, b) the normal
curvature is 0, c) the normal curvature is negative.

FOE

Figure 6: In a concave region, collinear points (left) move to noncollinear points (right) that
are turning towards the focus of expansion.
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oil 111e location of the FOE is sunlarized in the following proposition (proof is givn in h,
appendix):

Proposition 2 (hoose O and 02 so that they are collinear with 00 and lie on different sid.,
of 0o. Assume backward motion (the motion is defined now as a tran,,aition followri by ,a
rotation). If 01 is chosen such that the angle through 01, Oo and the FOE going clcki'i. i.,
..rnaller than IS 0 ° , that is, 01 is above the sign-bisector in figure 5. then the -sign of T Cqial.,
the sign of the normal curvature of<. If 01 is chosen so that the angle is larger than 1'w0 ° th ri
the sign of T is opposite to the sign of the normal curvature of (. If the angle equants I '0: tIK r?
the sign of T is identically 0.

One result of proposition 2 is that if 01 is chosen around 00 in all orientations between 0' and
360'. the correlation between the sign of T and the sign of the nornial curvature reverses at
the orientation where 01. 00 and the FOE are collinear (7-0 in figure .5). The direction where
T changes sign will be used later to compute the direction of the translational component of
the motion at PD.

Now it is possible to classify the surface near a point P0 using the following simple algorithm:
In the first image. for each direction r from a sample set of directions around On (see upper
part of figure 5) choose two points in the image 01 and 02 on both sides of 00 so that they are
collinear and 01 defines a slope r. It is assumed that 01 and 02 are the projections of points
lying on the same surface as P0 . Choose 01 at all orientations r around 00. 00 < r < 360".
Compute T(r) tor all 7. Then:

* T(r) changes sign twice (see figure 7 above) :=> surface is elliptic.

" T(r) changes sign twice and obtains the value 0 for some other directions 7 and 7 1+ W
without changing sign * surface is parabolic,

" T(r) = 0 => surface is planar,

" T(r) changes sign six times (see figure 7 below) ::* surface is hyperbolic.
(the sign changes four times at ax-.; of zero-curvature and twice at the sign-bisector.)

In the presence of noise, some threshold should be used instead of 0, which may cause regions
whose curvature is low to be classified as planar.

The sign of T(r) is ambiguous when the location of the FOE is not known. It gives the
sign of the normal curvature for a range r0 < r < ro + 180' for some 70 and the inverse sign
for other values of r. The direction r0 is denoted sign-bisector (see figure 7). It is the direction
where T(r) changes sign independently of the normal curvature.

The same 70 gives the direction of the translational component of the motion at P0. This
motion component can be used to obtain the focus of expansion and relative depth. In the
elliptic case it is the only direction along which T(r) changes sign (figure 7). All such lines
at angles r0( PO) for different points P0 intersect at a single point - the FOE (see figure 8). In



Elliptic

FO convex FO concave

0 a (+) location of 0,

0

Hyperbolic (-)

FOE +

00

Figure 7: The sign of T(r) depends on the relative position of 01 with respect to O0 and the
FOE. In the figure, the circle represents possible locations of 01, the +/- inside indicates the
sign of T(r) whereas the sign of the normal curvature is given in parentheses. Above is the
elliptic case. below is the hyperbolic case.
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the hyperbolic case. T(r) changes sign at three directions (six orientations), as is illustrated in
figure 9 right. Two are axes of zero-curvature and a third is the translational component of the
motion. The third axis of sign change of T(r) at all the points intersect at tile FOE.

The location of the FOE can be used to complete the surface classification with T(7) if 01
is choson so that tile angle between 01. 00 and the FOE when going clockwise is smailer than
IS0' . Tile classification algorithm is now:

* T(r) = 0 Vr surface is planar.

" T(7) > 0 Vr z surface is concave.

" T(7) < 0 Vr = surface is convex.

* T(i-) 0 Vr or T(7) :S 0 Vr . surface is parabolic (cylindrical). The axis of zero
curvature is the axis for which T(r) = 0.

" T(r) changes sign = surface is hyperbolic. In this case the asymptotes are the directions
for which T(r) = 0. The principal directions (direction of minimum and maximum
curvature) are the lines that cross tne two angles defined by the asymptotes.

Note that this classification is done without the computation of the normal to the surface.
To summarize, by computing the sign of T(r) for all 0' < r < 3600 we can classify a surface

as elliptic, hyperbolic, planar, or parabolic. At each point we also obtain the direction of the
translational component of the motion. By using more than one point we are able to compute
the location of the focus of expansion and thus further classify an elliptic region as convex or
concave. In a hyperbolic region we obtain at each point three axes, two of which are axes of
zero-curvature and one is the translational component of the motion. From the two axes of
zero curvature we can compute the principal axes, the axes of minimal and maximal curvature,
that are the two angle bisectors of the two axes of zero-curvature.

3.2 Examples:

Synthetic objects (a sphere and a torus) have been classified using the following algorithm:
For each pixel (denoted P0 ) in the first image that belong to the object:

1. for each 7 in the range -90' < r < 900, with 10 increments:

(a) find two points on both sides of P0 that belong to the object and so that the three
points are collinear with slope r.

(b) find the coordinates of the three points in the second image by computing the motion
transformation.

(c) compute T(r).

2. count the number of zero-curvature axes:

(a) count the number of zero-crossings of T(r).

(b) count the number of zero-touchings of T(r).

(c) add the two numbers and subtract 1 (for ro, see figure 7).

10



(d) save the zero-crossings and the the zero-touchings. The single zero-crossing in the
parabolic and elliptic cases is the translation component of the motion at P0 . The
zero-touching in the parabolic case is the axis of zero curvature. The three zero-

crossings ill the hyperbolic case are the translation component of the motion at P0
and the two axes of zero curvature.

3. classify P0 as elliptic. parabolic, planar or hyperbolic according to the number of axes of
zero-curvature.

-1. Classifv further an elliptic point:

(a) if the location of the FOE is not known and more than two points have already been
analyzed, compute the location of the FOE. Go to the next point if the location
of the FOE is not known or if it is not known whether the motion is backward or
forward.

(b) take the sign of T(r) at 7 = 90'.

(c) reverse the sign if forward motion.

(d) reverse the sign if the x coordinate of P0 is smaller than the x coordinate of the
FOE.

(e) if the final sign is negative than the surface is convex, otherwise it is concave.

The first example is a synthetic sphere. The motion of the sphere was a translation of
(2, -2, 10), rotation of 150 around the X-axis, rotation of -20' around the Y-axis, and rotation
of 5' around the Z-axis. The center of the sphere was initially located at (0, 0, 50), with radius
20. It had moved 2.7' of arc. The zero-crossing of T(r), i.e. the translation component of the
motion, is shown in figure 8 at arbitrary three points on the sphere. The three zero crossings
intersect at the FOE. Figure 8 also illustrates the resulting classification: all the points on
the sphere have been correctly classified as convex which is shown by the particular grey level
assigned to all of them.

The second example is a syntketic torus. The motion of the torus was the same as that
of the sphere. The center of the torus was initially located at (0,0,50), with large radius 10
and small radius 5. The zero-crossings of T(r) are shown in figure 8 at arbitrary four points
on the torus, two elliptic points and two hyperbolic points. Figure 9 illustrates the resulting
classification: the torus had been correctly classified as being composed of a convex region on
the outsid- and a hyperbolic region in the inside. The two classes are marked by different grey
levels. Note the emergence of the parabolic line on the torus (the line separating the hyperbolic
region from the - i-ex region, whose type is parabolic). It is often argued that these parabolic
lines are impo. . for image representation (see [17]).

3.3 Surfac.e c-" vture from stereo disparities

With genera, rrnot.,,n we had to know the location of the focus of expansion to disambiguate
completely the sigri of T(r) at a single point. The least we had to do was to repeat the analysis
in more than one point in order to locate the focus of expansion. This computation is useful by
itself, since the location of the focus of expansion is important for other purposes like navigation.
lowever, we can use the limited knowledge on the relative location of the two cameras that is

11



Figure 8: Classification of a sphere from two images taken in motion, see text. Left: the optical
flow vectors do not intersect and do not reveal much about the motion. Right: the translational
components of the motion field intersect at the focus of expansion.

VWI

i

Figure 9: Classification of a torus from two images taken in motion, see text. The final clas-
sification is shown by the shading: light grey for hyperbolic and dark grey for convex. Left:
the optical flow vectors, right: the zero-crossings of T(r): the axes of zero curvature and the
translation component of the motion.
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available if the two images are obtained as a stereo pair. In this case it is possible to obtain
at each point the coordinates up to a scaling factor (like in perspective projection) in a new
coordinate system whose focus of expansion is fixed. it is the origin of the coordinate system in
,ither of the cameras. Thus it will be sufficient to apply the sign operator at a single point to
be able to classify it fully. namely, disambiguating the elliptic case to convex or concave.

I make the foll[owing assumptions: given two cameras, assume that the principal rays inter-

sect at a fixation point. Assume also that the plane that passes through both cameras and the

fixation point includes the X-axes of both cameras. The following coordinate system will be

used (see figure 10): let the fixation point be the origin, the plane through the origin and the

Y

-IN,

Y, P

0

0

RIGHT CAMER~A

Xr

Figure 10: Above, the 3D coordinate system defined by two cameras. Below. the image plane
of the right camera. Point 0 is the projection in the image plane of the 3D point P. Its polar
coordinates R and 0 are shown.

two cameras be the X - Z plane, and the line perpendicular to this plane through the origin be
the Y-axis. On the X - Z plane, the principal rays of both cameras intersect at the origin and
create an angle 2,u between them. Let the Z-axis be the angle-bisector of 2Y, and the X-axis
perpendicular to the Z-axis.

Let P = z(x, y, 1) in the new coordinate system. Let (RI,Oi) and (Rr,7),) be the projections

13



in polar coordinates of P on the left and right images respectively (see figure 10). Then the

following holds (see (19]):

cot dr + cot dl 2 sin
cot dr - cot ' cot dr - cot dI

Now the --first- image in the previous section will be one of the two actual images and
the "second- image will be the perspective projection in the coordinate system defined above.
Thus the focus of expansion in the first image is the origin of the camera. The sign bisector
at direction ro, the orientation along which T(r) changes its sign regardless of the sign of the
normal curvature, is the line connecting O0 to the origin. Therefore the sign of T(r) can be
directly used to obtain the sign of the normal curvature. For convenience, I compute T(r) as if
the perspective projection in the second coordinate system is on the X - Z plane, a modification
that does not affect any of the underlying arguments. Thus,

) (cot d -cot l) -(cot dl -cot dl) (cot12 -cot 0°) - (cot 2 -cot ) (3
(cot d) -cot dO) + (cot OJ - cot d') (cot 02 - cot O° ) + (cot d2 - cot 0)o)

If o = (xo, yo), then r0 = arctan YO. Thus if 01 = (xI,y) is chosen so that arctan1 <

arctan 2L < (arctan 1- + 1800) then from proposition 2 the sign of Tst(r) gives the sign of
the normal curvature unambiguously. The same algorithm can.now be used to classify surface
patches from stereo disparities.

The classification algorithm used in the following examples is as in section 3.2, with the
following difference:

1. Tt(r) is computed instead of T(r).

2. the sign of T(r) at r = 900 needs to be reversed only if the signs of the x- and y-coordinates
of Po are opposite (here we use the fact that the effective FOE is located at the origin of
the coordinate systems).

3. using the origin as the FOE, the zero-crossings of T8 t(r) that correspond to the two zero-
curvature axes in the hyperbolic case and the single zero curvature axis in the parabolic
case are isolated, from which the maximum and minimum curvature axes are immediately
obtained. In the elliptic case the axes of minimum curvature is estimated by the r that
minimizes Tgt(r), and the maximum curvature axis is the perpendicular axis.

Figure 11 shows classification results for synthetic data of a torus, a cylinder, a cone, a
hyperbola and a sphere. All the objects but the torus were centered at (20, 20,50) (in the above
coordinate system) with the other parameters set to 4. The torus was centered at (20,20, 20),
with big radius 8 and small radius 4. The convergence angle of the camera (2ys) was 300. The
distance between both cameras and the fixation point was 150 for the torus and 50 for the other
objects. The shadings are explained in the legend of the figure. The results are accurate both
for surface classification and the directions of the principal and the zero axes.

3.4 The computation of a 1D curvature

We have computed the sign of the surface curvature at a point by computing the sign of the
curvature of curves whose tangents span all directions in the tangent plane of the surface at the
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Figure 11: First row, left: a sphere, middle: a torus, right: inside a torus. Second row, left: a
hyperbola, middle: a tilted cylinder, right: a double cone. The shadings mean the following:
surface classification: the lightest grey marks hyperbolic regions (internal rings in both toruses,
the hyperbola), darker shade of grey marks parabolic regions (cylinder and cone), darker grey
marks convex regions (sphere, external ring of torus), and the darkest grey marks concave
regions (external ring of inner torus);
axes: white marks axes of zero-curvature, grey marks axes of minimum curvature or maximal
negative curvature, and black marks axes of maximal curvature.
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point. Each of these curves was defined by three I oints on the surface and had the property
that the projections of the three points in the first image were collinear. In this case the sign of
the 2D curvature of the projections of the three points in the other image relative to the FOE

ave the sign of the 3D curvature of the 3D curve on the surface. This is also the sign of the
nOvL'Ial curvature at the direction of the tangent to this 3D curve.

This scheme can be generalized to estimate the sign of the curvature (though not the normal
cdrvature) of other 3D curves defined by three points in the two images. A generalized rule
would be the following: let a be the 2D angle between three points in the first image (see
figure 12). 0 < a < 900 if the angle is turned towards the FOE in that image and 900 < a < 1300
otherwise. Thus for backward motion, if a increases from the first image to the second, the sign
of the curvature is positive, otherwise it is negative (figure 12a). This generalized rule yields
the correct sign in many cases. Figure 12b illustrates the deterioration in performance when
the angle a between the three points in the first image, which measures the deviation from
collinearity, increases.

7-
FoE -' • f FOE

fi,'t imlq[. mcn 'mape 0 to 20

2D curvature (angle in degrees)

b)

Figure 12: a) an example of the change in the 2D curvature of three points originating from a
concave curve in 3D from one image to the next. In the upper and middle examples 0 < a < 90,
in the lower example 900 < a < 1800. b) The generalized rule (see text) is not exact, its
performance deteriorates with the amount of deviation from collinearity in the first image (a
in the text). In this example the motion is a translation of (10, 0, 10), rotation of 10' around
the X-axis, rotation of -10' around the Y-axis, and rotation of 100 around the Z-axis.

4 Sensitivity to errors

Small errors in the data due to quantization errors in discrete data and noise have quite devas-
tating effects on the estimation of local surface type. This is true for any algorithm, therefore
the data (either disparities or reconstructed depth) has to be substantially smoothed before the
surface type can be meaningfully computed. To estimate the error rate before smoothing, I
compute the percent of correct evaluation of the sign of the normal curvature at all directions

16



over all the surface (that is, at the same data points that were used for the previous classification
examples).

The error rate is first computed for the simple 2D algorithm described in section 3. It is
compared to the error rate of the best alternative algorithm (both before smoothing). This
;l~oritii estimates the 3D coordinates of a matched pair by the point closest to two 3D rays.
-ach passes through one camera and the projection of the feature on its image. (These rays
idrally intersect at the exact location of the feature in 3D). The algorithm uses a perfect knowl-
edge of the motion or camera parameters, therefore the usually large errors introduced while
computing these parameters from the noisy data itself are artificially avoided. As expected.
when the recursive error due to the computation of the motion parameters from noisy data is
eliminated, the best exact algorithm does better than the 2D algorithm, but not much better.
The results of the comparison are given in table 1 for stereo and table 2 for motion. Data is
given for different objects. different resolution levels (measured in the number of pixels in the
intervals II 01 - 00 11 or ff 02 - O0 11), and different noise levels (where the standard deviation
is measured in percent of the intervals I1 - (0 11 or j 02 - 00 11).

'rsouton1noise error rate

o t resolutionI SD 2D algorithm best 3D algorithm I difference

cylinder 10% 35% 30% 5%
sphere 10% 37% 29% 8%
hyperbola 10% 32% 26% 6%
hyperbola 10 15% 9% 6%
hyperbola 5 26% 17% 9%
torus 10 23% 19% 4%
torus 50 6% 3% 3%
torus 10% 41% 32% 9%
torus I_____4% 26% 18% 8%

Table 1: Curvature from stereo: the first column gives the object type, the second column
gives the resolution (see text) if it is finite, and the third column gives the standard-deviation
of the noise in percents (see text) if there is any. The next two columns give the error rate
for the 2D algorithm described in the previous section and the best 3D algorithm using exact
motion parameters (see text). The last column gives the difference in error rates between the
two algorithms.

In the 2D curvature from motion algorithm, small angles of curvature may be classified as
zero-curvature when the resolution is finite. Such directions are ignored in the computation of
the error rate. For finite resolution I compute the error rate in two cases: first subcolumn in
table 2 is the regular error rate as before; second subcolumn in figure 2 is the error rate if the
task is performed with hyperacuity that is an order of magnitude better than visual acuity. If a
biological visual system uses its ability to compute the orientation of three points with an order
of magnitude higher precision than visual acuity (Vernier acuity), then the second subcolumn
may give a better comparison for its error rate (see section 5).
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error rate
noise 2D algorith in

object resolutiou S) regular hyperac'nity best 3D algorithni differenc v
c.iinder 10, f  -31 393( 7
sphere 10% -12% --- 3 77
sphere t0 -- 28% 3% 20% 8%
hyperbola 8% 43% -- 35% 8%
hyperbola 10 - 28% 8% 22% 6%
torus 10 35% 16% 32% 3%(7c
torus 20 28% 8% 21% 7%
torus 4% 41% --- 35% 6%
torus 8% -16% - 42% 4 X,

Table 2: Curvature from general motion: translation (10, - 10, 10) and rotation 15' around the
X-axis, -200 around the Y-axis, and 5' around the Z-axis. The columns are as in table 1.
with a difference that two error rates are given for the 2D approximate algorithm in the finite
resolution cases (see text).

5 Discussion

The curvature operators described in section 3 can be implemented by a biological system
with high precision. From Proposition 1 we see that the operator that gives the sign of the
normal curvature has to check whether three points are collinear or otherwise how the angle
between them is oriented. This is an example of a hyperacuity task (see [20] pp. 337 for a
review), namely, the precision with which it can be done is ten times higher than the visual
acuity. Thus, the biological system may be capable of computing the sign of the curvature
directly, without recourse to an operator similar to T. Because of the hyperacuity resolution.
the expected error rate, which is already of the same order of magnitude as the error rate of
the best 3D algorithm that uses known motion parameters, should be significantly lower (see
table 2). Also, the algorithm that computes shape type involves only line operators at different
orientations. This is consistent with known biological architectures.

Koenderink and van Doom ([14]) showed that some important features, the sign of the
Gaussian curvature for example, are related to motion invariants of vector fields (e.g., shear).
these results are derived using vector field analysis and therefore assume the existence of a

differentiable vector field (though singularities are addressed in [21]). The results are less gen-
eral in that the curvature is assumed to be large relative to the distance to the object, and
the angular part of the rotation is assumed small. It is also not clear how the appropriate
vector field invariants can be computed. Finally, the sign of the Gaussian curvature does not
provide a complete classification of surfaces with respect to the viewer (i.e., the distinction
cunvex/concave). I have shown above that some interesting quantities (the sign of the Gaus-
sian curvature and the absolute sign of the normal curvature) can be computed with simple
hyperacuity detectors at different orientations. The analysis is exact, the only approximation
is in the computation of the curvature of a planar curve using discrete data. (It is interesting
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to note here that Koenderink and van Doorn [16] have suggested the use of difference of slopes
of line segments to approximate the shear of the stereo vector field. This is in fact the operator
uised above (equation 2) to determine the sign of the normal curvature.)

On, can also regard the 2D algorithm of section 3 as a way to compute the direUtill ,f
motion: tie focus of expansion and the direction of the translational component of the mo-
tion. 'Fihe location of the FOE is obviously important for navigation, and (the exact value of)
the translational component of the optical flow can give relative depth. Longuet-Higgins and

Prazdny ([7]) have shown that these quantities can be computed from the optical flow and
described two algorithms to compute them. Their algorithm (the one using dense data) com-
putes the exact value of the translational component of the optical flow, not only its direction.

Some of its drawbacks are the following: it is computationally expensive and noise-sensitive;
it assumes that the surface function is smooth enough so that it can be approximated by the

linear terms of X and Y; and it is biologically implausible. Altogether, it is given more as an
existence proof that the computation of the motion parameters and structure from motion are
possible from images only. The approximate algorithm of section 3 shows that if we do not
require a complete computation of the motion parameters then some important features of the
motion can be computed more easily and in parallel, more reliably, and by a more biologically
plausible algorithm. It can also be used before a more exact algorithm to obtain an initial
estimate of the location of the FOE and the translational componeat of the motion.

6 Summary

This work has been motivated by two observations. First, the computation of the motion
parameters or the cameras' calibration is generally complicated, time consuming and error
sensitive. Second, it is not clear that biological vision needs such a computation or that it uses
the exact recovery of the depth of a surface at each point. From the analysis presented above
we can conclude that the direct computation of some interesting motion and shape invariants
from matched images may be computationally easier, more parallel in nature, and more robust
in the presence of errors. More specifically, it has been shown that the sign of the Gaussian
curvature of a surface patch can be obtained from motion or stereo disparities with a simple,
biologically plausible, operator. The focus of expansion can also be obtained from this analysis.
The surface cap further be classified as convex, concave, planar, cylindrical, or saddle-point. If
a sufficient amount of interesting quantities can be computed in a similar way (which depends
of course on the goal of the computation), the exact motion parameters and shape need not
be computed at all. This may be the case for the limited purposes of biological vision like
recognition and navigation.

7 Appendix

Following are the proofs of the propositions in section 3.

Proposition 1 Let Po denote a point on the surface of some object whose projection in the
first image is 0o. Let P1 and P2 denote two other points on the same surface whose projections
in the first image are 01 and 02, and where 00, 01 and 02 are collinear. Let 0 0, 01, and 02
be the projections of the same three points in a second image. Assume the motion. is backward
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(awray from the focus of expansion). Then the sign of the normal curvature of the curve
Passing through Po, P1 . and P2 can be determined as follows:

* if th- .naltr angle through 0o, 01 and 02 is turned towards the focus of expansion then
tit normal curu'ature of is positive (see figure .5a).

* if 0 o. 01 and 02 are collinear then the normal curvature of ( is 0 (see figure .5b).

* if the smaller angle through 0o, 01 and 62 is turned away from the focus of expansion
then the normal curvature of ( is negative (see figure 5c).

In forward motion (towards the focus of expansion), the interpretation of the angle is reversed.
( The motion of the coordinate system is defined to be a rotation followed by a translation.)

Proof:
Let w denote the tangent of the curve ( whose sign of curvature we want to estimate. The
tanrents to all the curves on the surface passing through P0 must lie in the tangent plane at PO
jt crrr;e angle (.q. , in figure 13). The normal curvature of any curve with tangent WO is
equal to the exact curvature of a single curve with tangent we. This curve is the intersection of
the normal section, the plane through we and the normal, with the surface (see figure 13). Let
ug be the intersection of the normal plane and the surface. It is therefore sufficient to compute
the curvature of uo to obtain the normal curvature of C. Let no denote the curvature of uo9.

Consider the lower part of figure 13. Let N, be some arbitrary axis through P that creates a
sharp anglo with N (that is, N .N > 0). We define an N0 -section in a similar way to the normal
section: it is the plane that passes through N, and the tangent line we. The corresponding
No-section intersects the surface at a curve u'. Let n' be the curvature of u', n' lies in the
N.-section. Since no is perpendicular to we, it lies along the projection of N on the N0 -section.
either in the direction of N or -N. Since the angle between N and No is sharp, so is the angle
between N, and the projection of N on the N0-section. Thus the sign of n' with respect to N,
(the sign of iif • 'o) is equal to its sign with respect to the projection of N on the N0 -section.
This, in turn, has the same sign as its sign with respect to N (the sign of Mi N), which is the
sign of the normal curvature. Therefore the sign of no with respect to N, (the sign of fi •o
is equal to the sign of the normal curvature corresponding to we (the sign of iio S).

The argument reverses when applied to an axis N0 that creates an obtuse angle with N
(that is, iN • iVo < 0). It will break down if N and N, are perpendicular (,i. = 0), a case
for which the proposition does not hold.

The first image is depicted in figure 14. We choose axis N, to be the line of sight, the line
connecting Po and the first camera. By definition the normal creates a sharp angle with the
line of sight unless it is a boundary where the two lines are perpendicular. For a given we, the
corresponding N0 -section (marked in figure 14 with continuous lines) includes PD, P1 and P2
(three points on the surface as we have defined before), 00, 01 and 02 (their projections on
the first image), and the camera's pinhole. The curve u' is the line passing through Po, P and
P2. We define no to be the angle bisector of v, the angle defined by P1, PO and P2. 1 (Thus

'This definition can be justified in the following way. The direction of the normal to a plane curve at some
point Po is the radius of the circle of curvature, which is the limit of a circle through P and two neighboring
points P, and P2 as they approach Po. If some fixed P and P2 are equidistant to P0, the radius of the circle

20



axi. No

6 N

perpen icular

pie e

projection

Figure 13: Illustration of the normal section (upper part) and the N0,-section (lower part), see
text.
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Figure 14: The N-section of a plane containing P1, Po, P2 and the first camera.

we can think of ul as a smooth curve passing through P0 , P, and P 2 whose tangent at P) is
the line perpendicular to the angle bisector of v.) From the above discussion the sign of the
normal curvature is determined by whether v is turned "towards" the camera or "away" from
it. Let P0 be the intersection of the fine of sight and the line through P, and P2 in the plane
of the N0 -section (see figure 14). Then the question is whether Po is between the camera and
P0 or on the other side of P0 .

Perspective projection of the No-section, specifically P0, P1, P2, Poo and the camera's pinhole,
preserves order if all points lie in the half space that is in the field of view of the projection
(or the other half space). Assume that the plane is not projected to a line, that is, the second
camera is not translating on the N0 -section, tor which case the analysis does not hold. Thus
the question is whether the projection of Po is between the projections of the camera's pinhole
and P0 or on the other side of the projection of P0 . We choose the perspective projection on
the second image, where the Pi's are projected to 0i's respectively, and the camera is projected
to the focus of expansion. Thus if 00 is between the FOE and 00 then the normal curvature is
positive, aid if Or, is on the other side of 0 then the curvature is negative. If ( = Oo then
P0 , P and P2 are collineat t nd the normal curvature is 0. This completes the proof for the
backward motion since then P0, P1 , P2 and the camera are all in the field of view of the second

camera. If the motion is forward then the first camera is not in the field of view of the second
camera. The axis N0 (the line of sight) is projected discontinuously and therefore the meaning

passing through P1, Po and P 2 is also the angle bisector of the angle between them v. Thus the angle bisector
serves as a discrete estimator for the direction of the normal given two points like difference operators serve to
approximate derivatives.
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of the angle through the projections of P1 , P0 and P2 reverses.

Proposition 2 Let 0, as before uhere 01 and 02 are chosen on different sides of 00. Assume
b ackwcard motion (the motion is defined now, as a translation followed by a rotation). Let
0= (x,. ' ) note the projections of P respectively in a second image. as befoi. Let T =
"_-,, ',-.. IfU01 is chosen such that the angle through O. Oo and the FOE going clockwise
is smaller than 1800, that is, 01 is below the sign-bisector in figure 15a, then the sign of T
equals the sign of the normal curvature of . If01 is chosen so that the angle is larger than
1800 then the sign of T is opposite to the sign of the normal curvature of (. If the angle equals
lS0' then the sign of T is identically 0.

P roof:
From the previous proposition, the sign of the normal curvature is determined by whether 0'0
is between the FOE (the projection of the camera) and 0 or on the other side of 60 (see
figure 1.5)).

I 0 Y

n-bisector 2 gn-bisector

0 021600 0 2

< 1800 / / 0
0

FOE FOE

first image second image

a) b)

Figure 15: The perspective projection of N0 -section assuming P1, P0. P2 and the camera are
on the same field of view: a) first image, b) second image.

From its definition T = tan 32 - tan3 1 (figure 15b). We know that 01 and 02 lie on
different sides of the sign-bisector. Assume for simplicity that 01 and 0.2 lie on different sides
of a parallel to the Y-axis through 00 (figure 15b). If 01 is below the sign-bisector in figure 15b
then the sign of T is positive iff 0 is between the FOE and 0Qo and negative iff 0' is on the
other side of 00. That is, the sign of T is equal to the sign of the normal curvature of C if tile
angle through 01, 00 and the FOE going clockwise is -mallor than 1800. We have used the
previous proposition for backward motion when the motion is defined as rotation followed by
translation. If the motion is redefined as translation followed by rotation, and backward motion
is again assumed, then this condition is equivalent to the following: the sign of T is equal to
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the sign ef the normal curvature of q" if the angle through 01. 00 and the FOE going clockwise
is smaller than !,0 0 . In a similar way, the sign of T is the opposite of the sign of the normal
curvature of , if the angle through 01. 00 and the FOE going clockwise is larger than IRO' . If
th allne through O1. O0 al(t the FOE equals lS0 , Po, P1 . P2 and the camera are collinear
and therefore T = 0. This completes the proof of the proposition.

When 01 and 02 are both on the same side of a parallel to thE Y-axis through O0 the
problem can be easily fixed. This case is detected when the sign of x 2 - xf equals the sign of
x - zo. It is sufficient to push either 01 or 02 to be almost parallel to the Y-axis on the other
side (±-c). Usually, though, the combined use of T and T - 1 eliminates the problem.
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